Package: quickdag (via r-universe)

March 12, 2025

Title Make Beautiful Directed Acyclic Graphs
Version 0.2.0

Description This package allows the user the save directed acyclic
graphs (DAGs) generated in DiagrammeR and export them to pdf,
png, or svg format. Users may optionally choose to view the DAG
without saving or to embed it in an RMarkdown document. In
addition, quickDAG allows the user easily to reformat DAGs as
single-world intervention graph (SWIG) templates.

Depends R (>=3.5), DiagrammeR

Imports DiagrammeRsvg, rsvg, knitr, dagitty, stringr, purrr, dplyr,
htmlTable, messaging

License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.2

URL https://github.com/jrgant/quickDAG

BugReports https://github.com/jrgant/quickDAG/issues
Suggests testthat

Config/pak/sysreqs libglpk-dev make libicu-dev librsvg2-dev
libxml2-dev libssl-dev libnode-dev libx11-dev

Repository https://remlapmot.r-universe.dev

RemoteUrl https://github.com/jrgant/quickdag

RemoteRef HEAD

RemoteSha 6ea3c3baf82d8e1027db0806ac745a4c5b28a927

Contents

makeDAG e e
qd_dag. e
qgd_embed

https://github.com/jrgant/quickDAG
https://github.com/jrgant/quickDAG/issues

2 makeDAG

qd_Save e e e 5
Qd_SWIZ . . . e 6
gd_themes e e e 7
qd_todagitty 7
SEP_OPES v v e 9
Index 10
makeDAG Output, view, or embed DAGs.
Description

Save directed acyclic graphs (DAGs) generated in DiagrammeR and export them to pdf, png, or
svg format. Users may optionally choose to view the DAG without saving or to embed it in an
RMarkdown document.

Usage

makeDAG (

graphcode = NULL,
dagname = NULL,
filetype = "pdf"”,
text.nodes = NULL,
box.nodes = NULL,
solid.edges = NULL,
dashed.edges = NULL,
footnotes = NULL,
direction = "LR",
embed = FALSE,

Arguments

graphcode Partial graphViz code object, which will give you the most control over the
appearance of your DAG.

dagname A path with which to name your DAG file, if filetype set to output format (see
below).

filetype Output file format. Select from pdf, png, svg, or view. Setting the option to
view will not save a file but will generate the diagram in your viewer. Defaults
to pdf.

text.nodes A string containing the plain text nodes, separated by spaces.

box.nodes A string containing the boxed nodes, separated by spaces.

solid.edges A string specifying the paths you want to draw between measured covariates.

Example: "Alcohol -> Smoking Smoking -> Cancer"”.

qd_dag

dashed. edges
footnotes
direction

embed

Note

A string specifying paths containing unmeasured covariates.
Add a footnote to the bottom of the graph.
Specify the direction of diagram flow. Defaults to "LR", for left-right.

For use within R chunks in RMarkdown only. You will probably want to have
the echo chunk option set to FALSE, unless you want to display the R code itself.
The embed defaults to TRUE.

Pass arguments to interior functions for PNG or SVG files. For instance, specify
height and width arguments.

This is not a true DAG package in the sense that it will not prevent the inclusion of feedback loops
or bidirectional arrows. It’s meant mostly to create reasonable-looking DAGs quickly and easily
with a minimum of layout or formatting code. DiagrammeR in general does a pretty good job at
layout. Those interested in DAGs might check out other R packages like dagR or dagitty, both of
which I’ve yet to explore in detail.

Suggestions and issue reports welcome at https://github.com/jrgant/quickDAG/issues!

References

A fair amount of the heavy lifting here is done thanks to code snippets from users HJAllen and
puterleat on the following thread: https://github.com/rich-iannone/DiagrammeR/issues/

133

Packages used: DiagrammeR, DiagrammeRsvg, rsvg

Examples

Using your own graph code

Examples have been removed, as makeDAG() is now deprecated.

qd_dag

Generate a graph object

Description

Provide simple syntax specifying paths between nodes to generate a graph object.

Usage

qd_dag(
edgelist,
node. labs

node.aes.opts
edge.aes.opts

NULL,

= list(),
= list(Q),

https://github.com/jrgant/quickDAG/issues
https://github.com/rich-iannone/DiagrammeR/issues/133
https://github.com/rich-iannone/DiagrammeR/issues/133

4 qd_dag

verbose = TRUE,
check.dag = TRUE,

theme = "base",
)
Arguments
edgelist A vector of edge relationships. Must be strictly organized (see example for
format).
node. labs A named character vector containing label names. Defaults to NULL.

node.aes.opts A list feeding aesthetic options for nodes to DiagrammeR: :node_aes(). De-
faults to empty list. See ?node_aes to view available parameters.

edge.aes.opts A list feeding aesthetic options for edges to DiagrammeR: :edge_aes(). De-
faults to empty list. See ?edge_aes to view available parameters.

verbose Indicate whether to print node and edge dataframes to the console. See NOTE
below. Defaults to TRUE.

check.dag Logical. Check whether the graph conforms to the rules of DAGs. Defaults to
TRUE.

theme Choose theme for plot output. Defaults to "base". Setting theme to NULL will

use DiagrammeR’s NULL attribute theme.

Pass optional conditioned argument to qd_themes().

Details

Suggestions and bug reports welcome at https://github.com/jrgant/quickDAG/issues.

Packages used: DiagrammeR, stringr, purrr

Note

Leaving the checks option selected may be advisable to ensure labels and IDs have not been mis-
matched. By default, qd_dag() alphabetizes nodes included in edgelist and does the same for
node. labs under a first assumption that labels will begin with the same letter as their correspond-
ing alpha. id, which may not always be the case.

Examples

Provide a list of edges, with nodes specified as letters.
Do not list a node as a parent more than once.
Each line should contain a single edge character '->'.
edges <- c("A -> { B C }",

"B -> C")

make a DAG object and render the graph using the default theme
g.obj <- qd_dag(edges)
render_graph(g.obj)

Pass labels and aesthetic options for nodes or edges

https://github.com/jrgant/quickDAG/issues

qd_embed 5

g.obj2 <- gd_dag(edges,
node.labs = c("A" = "Alcohol”,

"B" = "BP",
"C" = "CVD"),
node.aes.opts = list(shape = "plaintext”,
fillcolor = "none”,

color = "black"),
edge.aes.opts = list(arrowsize = 0.5,
color = "gray"),
theme = NULL)
render_graph(g.obj2)

qgd_embed Embed diagrams in RMarkdown

Description

A wrapper around qd_save () meant for use within R code chunks in RMarkdown documents.

Usage
gd_embed(...)
Arguments
Pass arguments to qd_save().
gd_save Save graph objects
Description

Export high-quality, scalable graphics for both print and online.

Usage
qd_save(graph, filename = NULL, filetype = "pdf"”, embed = F, ...)
Arguments
graph Either a DiagrammeR graph object or a diagram generated by render_graph().
filename String for filename. Defaults to NULL.
filetype One of pdf, eps, pdf, svg. Defaults to pdf.
embed Defaults to FALSE. Automatically set to TRUE by qd_embed ().

Pass arguments to render_graph(), e.g., width and height (pixels) for .png
files.

6 qd_swig

Functions

e gqd_save():

gqd_swig Generate a single-world intervention graph (SWIG)

Description

Take a DAG graph object and, in the simplest case, create a single-world intervention template
corresponding to a world in which the fixed nodes are set to a given value. Alternatively, tell
qd_swig which values fixed nodes will be set to.

Usage

gd_swig(
graph.obj,
fixed.nodes,
custom.values = NULL,

fixed.sep = "vlin",
sep.point.size = 15
)
Arguments
graph.obj A DAG object created by qd_dag().
fixed.nodes A vector containing the nodes to be intervened upon.

custom.values A named vector containing alternative labels identifying explicit values for fixed
nodes (e.g.,a=1).

fixed.sep A character string indicating which character to use as a separator in fixed nodes.
Defaults to "vlin". Run sep_opts(T) for available options.

sep.point.size A numerical value specifying the point size for fixed node separators.

Examples

Provide a DAG object and a list of nodes to be fixed
edges <- c("A -> Y",
"> {AY)

dag <- gd_dag(edges)
swig <- dag %>%
qd_swig(fixed.nodes = "A",

custom.values = c("A" = "1"))

swig %>% render_graph()

qd_themes

qd_themes

Diagram themes

Description

Apply various pre-fabricated themes to diagrams.

Usage
qd_themes(graph.obj, theme, ...)
theme_base(graph.obj, font = "serif”, ...)
theme_circles(graph.obj, font = "serif”, ...)
theme_dots(graph.obj, font = "serif”, ...)

get_conditioned_nodes(graph.obj, conditioned = NULL)

Arguments

graph.obj

theme

font

conditioned

A DAG object created by qd_dag().

A character string indicating the theme to use. Defaults to "base". Set to NULL
to use GraphViz defaults.

Pass arguments to theme call (e.g., theme_base()), such as conditioned or
font

A character vector indicating the font family to use for node labels. Defaults to
"serif".

A character vector indicating which nodes are conditioned upon. The shape for
these nodes will be set to "square".

gd_todagitty

Identify variables for adjustment

Description

Format an edgelist and send it to dagitty to identify variable adjustment sets.

8 qd_todagitty

Usage

qd_todagitty(
edgelist,
diagram_type = "dag",
showplot = FALSE,
send.global = FALSE,
dagitty.obj.name = NULL,
exposure,
outcome,

Arguments

edgelist A vector of edge relationships. Must be strictly organized (see example for
format).

diagram_type Character identifying the diagram type. Defaults to "dag", but user can specify
another graph type (see dagitty documentation).

showplot Logical indicating whether to produce a dagitty plot. Defaults to FALSE.

send.global Logical indicating whether to make the dagitty object available in the global
environment. Defaults to FALSE.

dagitty.obj.name
Character specifying the name of the dagitty object. Only used and required if
send.global = TRUE.

exposure Character. Specify exposure of interest. (Required)
outcome Character. Specifiy outcome of interest. (Required)

Pass arguments to adjustmentSets(). See dagitty documentation for options.

Note

The exposure and outcome options map to dagitty functions of the same name.

Examples

edges <- c("A -> { B CD}",
"B -> C"
"E -> { B C}")

must pass exposure and outcome arguments to dagitty::adjustmentSets()
gd_todagitty(edges, exposure = "A", outcome = "C")
qd_todagitty(edges, exposure = "A", outcome = "C", type = "minimal")

sep_opts 9

sep_opts View options for fixed node separator characters

Description

Preview character options for use as the fixed node separator in SWIGs.

Usage
sep_opts(table = FALSE)

Arguments

table Logical to show or hide HTML table display of available characters. Defaults to
FALSE.

Index

get_conditioned_nodes (qd_themes), 7
makeDAG, 2

qd_dag, 3
gd_embed, 5
qd_save, 5
gd_swig, 6
qd_themes, 7
qd_todagitty, 7

sep_opts, 9

theme_base (qd_themes), 7
theme_circles (qd_themes), 7
theme_dots (qd_themes), 7

10

	makeDAG
	qd_dag
	qd_embed
	qd_save
	qd_swig
	qd_themes
	qd_todagitty
	sep_opts
	Index

